
Go Editor Support
in Bazel Workspaces

Jay Conrod (he/him)
Software Engineer, EngFlow
@jayconrod

About me

● Software engineer at EngFlow
● Previously on Go Team at Google
● Worked on Go modules, fuzzing
● Maintained rules_go, Gazelle

History

GOPATH
● GOPATH: list of directories containing Go packages.
● Lots of tools understood GOPATH, followed UNIX principle.

bundle delve eg errcheck

fillstruct go-outline godef godoc

godoctor gogrep go-fuzz goimports

gorename goreturns megacheck wire

● Each editor had its own plugin, usually delegating to these tools.

Bazel support

● Bazel was very new, and rules_go was even newer.
● No editor support for Bazel, but if you mostly followed GOPATH conventions,

your editor would be happy*.
● Generated code broke everything, unless you checked it in.
● Without build-time code generation, why use Bazel?

Modules

● Integrated dependency management into the toolchain. No more GOPATH.
● Totally different approach to file layout. None of the tools worked.
● We needed to rewrite everything to work with modules.

And we needed to support GOPATH indefinitely.
And Bazel. And Blaze. And maybe Buck.

● So basically,
we're building complete editor support for all editors, all build systems.

We can solve any problem
by introducing an extra level

of indirection.
— David J Wheeler

The Stack

rules_go

gopackagesdriver

go/packages

gopls

vscode-govimgo emacs eglot

godef wire

Editor

Tools

Loader

Build adapter

Build system

Demo

rules_go

gopackagesdriver

go/packages

gopls

vscode-govimgo emacs lsp-mode

godef wire

Editor

Tools

Loader

Build adapter

Build system

How does this work?

Need to know:
● What go_library target contains a file name?
● What files are in a go_library target? What does it depend on?
● Given an import string, like "google.golang.org/grpc",

where is its go_library target?

golang.org/x/tools/go/packages
type Config struct {
 Mode LoadMode
 Dir string
 Env []string
 BuildFlags []string
 ...
}

func Load(cfg *Config, patterns ...string) ([]*Package, error)

type Package struct {
 ID string
 PkgPath string
 GoFiles []string
 Imports map[string]*Package
 ...
}

gopackagesdriver

● @io_bazel_rules_go//go/tools/gopackagesdriver
● Set GOPACKAGESDRIVER in editor's environment

● Arguments: either files (preceded by "file=") or Bazel target names
● Stdin: JSON object explaining what should be loaded
● Stdout: JSON objects for each package

gopackagesdriver

1. Maps command line patterns to Bazel targets using `bazel query`.
2. Builds targets using `bazel build` with an aspect.

○ For each target, the aspect reads the GoArchive provider and writes a .json file.
○ Also builds generated srcs and export data if needed.

3. Reads JSON files, resolves file names, resolves imports, prints on stdout.

rules_go

● No special support needed in the rules themselves.
● GoArchive provider returned by every Go-compatible rule.

○ name, label, importpath
○ file, srcs, orig_srcs, runfiles
○ direct and transitive dependencies

rules_go

gopackagesdriver

go/packages

gopls

vscode-govimgo emacs lsp-mode

godef wire

Editor

Tools

Loader

Build adapter

Build system

gopls

● Implements Language Server Protocol (JSON RPC). Runs in separate process.
● When started, gopls loads package metadata graph for entire workspace,

then loads diagnostics for each package.
● After start, editor sends commands like "definition", which require a response.
● Editor also sends notifications like "didChange".

gopls

How does this scale?
● snapshot: logical view of the workspace at a specific time. Created when the

user changed something. Re-uses data from previous snapshot.
● Package metadata graph regenerated only for relevant changes.
● Cache: re-use deterministic results.

○ Keys are hashes of inputs.
○ Values could be anything: typically diagnostics, type info

● gopls is basically a build system.

vscode-go

● Most popular Go editor, followed by GoLand, vimgo, emacs.
● Originally by Microsoft, adopted by Go Tools Team.
● Written in TypeScript. Keeps the project small.
● Exposes features, installs tools, communicates with gopls, delve, vet.

Wrap up

Make things better!

● If you work in Go and want to make this better, get involved!
rules_go, Gopher slack, github.com/golang/go

● If you work in another language, please steal all of this!

Acknowledgements

Go: Rebecca Stambler, Hana Kim, Rob Findley, Michael Matloob,
Peter Weinberger, Suzy Mueller, Alan Donovan, Ian Cottrell,
everyone who worked on vscode-go, gopls, go/packages,
everyone who worked on tools, editors, IDE support.

rules_go: Steeve Morin, Zhongpeng Lin, Fabian Meumertzheim,
everyone who contributed.

Thanks!

